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A B S T R A C T

Purpose
The platinum chemotherapy agents cisplatin and carboplatin are widely used in the treatment
of adult and pediatric cancers. Cisplatin causes hearing loss in at least 60% of pediatric patients. Reducing
cisplatin and high-dose carboplatin ototoxicity without reducing efficacy is important.

Patients and Methods
This review summarizes recommendations made at the 42nd Congress of the International
Society of Pediatric Oncology (SIOP) in Boston, October 21-24, 2010, reflecting input from
international basic scientists, pediatric oncologists, otolaryngologists, oncology nurses, audiolo-
gists, and neurosurgeons to develop and advance research and clinical trials for otoprotection.

Results
Platinum initially impairs hearing in the high frequencies and progresses to lower frequencies with
increasing cumulative dose. Genes involved in drug transport, metabolism, and DNA repair
regulate platinum toxicities. Otoprotection can be achieved by acting on several these pathways
and generally involves antioxidant thiol agents. Otoprotection is a strategy being explored to
decrease hearing loss while maintaining dose intensity or allowing dose escalation, but it has the
potential to interfere with tumoricidal effects. Route of administration and optimal timing relative
to platinum therapy are critical issues. In addition, international standards for grading and
comparing ototoxicity are essential to the success of prospective pediatric trials aimed at reducing
platinum-induced hearing loss.

Conclusion
Collaborative prospective basic and clinical trial research is needed to reduce the incidence of
irreversible platinum-induced hearing loss, and optimize cancer control. Wide use of the new
internationally agreed-on SIOP Boston ototoxicity scale in current and future otoprotection trials
should help facilitate this goal.

J Clin Oncol 30:2408-2417. © 2012 by American Society of Clinical Oncology

INTRODUCTION

Platinum drugs are effective chemotherapeutic
agents commonly used in the treatment of a variety
of adult and pediatric cancers.1 Sixty percent of chil-
dren treated with cisplatin develop permanent bilat-
eral hearing loss.2,3 Although cisplatin is more
ototoxic than other platinum-based drugs, carbo-
platin is also ototoxic, especially when delivered at
myeloablative doses for autologous bone marrow
transplantation or when administered in conjunc-
tion with osmotic opening of the blood-brain bar-

rier.4,5 Once clinically significant toxicity is observed
on audiologic monitoring, current practice suggests
dose reductions or omissions, potentially reducing
cure,6 but the ototoxic damage is already done and
the hearing loss is permanent.7 In a young child, this
will have a detrimental effect on speech, language,
and social development.2,3 Further research is
needed to clarify the mechanisms of platinum oto-
toxicity, improve methods of reducing irreversible
hearing loss,2,3,8,9 and permit maintenance or esca-
lation of platinum dose intensity to improve cancer
control. The development of cotherapies aimed at
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preventing platinum ototoxicity requires collaboration between ex-
perts in auditory systems, cancer therapeutics, drug interactions, and
clinical oncology to ensure that proposed otoprotectants do not re-
duce the platinum agents’ potent tumoricidal activity.10-12

This article summarizes the work of four groups of experts (Ap-
pendix Table A1, online only) in the fields of basic science, genetics,
ototoxicity monitoring, and clinical trials in otoprotection. Each of the
groups included European and American experts who met through
telephone conferences and prepared a working document that was
presented at a symposium on chemotherapy-induced ototoxicity at
the 42nd Congress of the International Society of Pediatric Oncology
(SIOP) in Boston in October 2010. Attendees at the international
symposium were invited to join breakout sessions following the sym-
posium to share their expertise and contribute to a draft report. The
essence of those four working group summary reports and recom-
mendations are presented here.

MECHANISMS OF PLATINUM-INDUCED OTOTOXICITY

In preclinical studies, cisplatin has been the platinum agent most
frequently investigated in guinea pigs, mice, rats, and other rodents.
Induction of consistent ototoxicity with cisplatin requires a high dose
with either intraperitoneal or intravenous administration; however, a
single low dose is ototoxic if infused retrograde into the common
carotid artery,13,14 likely because of first-pass high-dose perfusion of
the vertebral arteries feeding the cochlea.

Platinum agents induce dose-dependent death of cochlear hair
cells, with outer hair cells more susceptible to cisplatin and inner hair
cells more susceptible to carboplatin15,16 in some animal models.

However, in the rat, carboplatin primarily targets outer hair cells.17

Cochlear hair cell death is first evident at the cochlear base and pro-
gresses apically with continued exposure to the drug.15,18 Platinum
agents target the DNA of proliferating cells to exert tumoricidal ef-
fects.19,20 Inside the cell, cisplatin is activated by the replacement of
one of its two chloride groups by a water molecule, and carboplatin is
activated by replacement of the cyclobutane moiety. The activated
monoaqua-platin binds to DNA, forming intra- and interstrand com-
plexes that lead to inhibition of DNA synthesis, suppression of RNA
transcription, cell cycle arrest, and apoptosis. In contrast to tumor
cells, cochlear and proximal tubule cells proliferate slowly, and mam-
malian cochlear hair cells not at all. In these cells, cisplatin alkylation in
mitochondria leads to release of proapoptotic factors and generation
of toxic levels of reactive oxygen species (ROS), both of which can
initiate cell death mechanisms through caspase activation.21-23 Hair
cell death is significantly inhibited (or at least delayed) by broad-
spectrum inhibition of caspases, which are highly involved in apopto-
sis, thought to be a mechanism of hair cell death.24-27 Cytosolic ROS
formation has also been implicated as a major mediator of cisplatin-
induced hair cell death.28-30 Increased pools of ROS not only damage
proteins and lipids but also deplete the cell’s intrinsic antioxidant
molecules potentiating further damage.31,32

Cisplatin also induces degeneration of the stria vascularis, de-
creasing the number of marginal and intermediate cells as well as spiral
ganglion cells.33,34 Inner ear sensory cells reside within a blood-
labyrinth barrier (BLB; Fig 1), similar to the blood-brain barrier. Any
breakdown in the cellular integrity or increase in paracellular perme-
ability (decoupling of tight junctions) between adjacent endothelial
cells in the BLB rapidly induces loss of the endolymphatic potential
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Fig 1. Model of the cochlea and cisplatin
(Pt) trafficking routes. Potential pathways
for systemic Pt to cross the blood-labyrinth
barrier and enter hair cells include (1) a trans-
strial trafficking route from strial capillaries to
marginal cells, followed by clearance into
endolymph; (2,3) traversing the blood-
labyrinth barrier into perilymph and subse-
quently into endolymph via transcytosis
across the epithelial perilymph/endolymph
barrier. (4) Once in endolymph, Pt enters
hair cells across their apical membranes. (5)
Pt in the scala tympani could also pass
through the basilar membrane into extracel-
lular fluids within the organ of Corti and
enter hair cells across their basolateral
membranes. S, stria vascularis; F, fibrocytes
in spiral ligament (data adapted35).
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with consequent loss of hearing sensitivity. Although platinum is
largely excluded by the blood-brain barrier,36,37 it can be detected in
cochlear tissues, indicating that it does cross the intact BLB (Fig 1),38,39

but the trafficking mechanism remains poorly understood.40,41 A clear
understanding of BLB function is critical to studies aimed at inhibiting
the entry of platinum (and other ototoxic agents) into cochlear tissues
or delivering potential otoprotective molecules to the cochlea to re-
duce ototoxicity.

GENETICS OF OTOTOXICITY

Platinum toxicity shows significant interindividual variability since
20% or more of children are seemingly not affected, and there is some
evidence to support ethnic/racial variability.42 These observations
have led to the hypothesis that genetic factors may render certain
individuals more susceptible to the adverse effects of cisplatin.43-45 The
field of pharmacogenomics seeks to explore this interindividual vari-
ability in drug response and identify genetic predictors of cisplatin-
induced hearing loss. A literature search of candidate genes involved in
platinum-induced ototoxicity is summarized in Table 1.

In a recent study,42 genetic variations in two specific genes, thiopu-
rine S-methyltransferase (TPMT) and catechol-O-methyltransferase
(COMT), were identified as having a strong association with cisplatin-

induced ototoxicity in children (Fig 2). TPMT and COMT variants
were found to be associated with severe cisplatin-induced hearing loss
(combined odds ratio, 42.2; P � .001). Furthermore, the number of
risk alleles carried by an individual was inversely related to time to
deafness; those who carried at least three of four risk alleles had a rapid
decline in their hearing, often with their first dose of cisplatin. The
combination of TPMT and COMT genotypes could be used as a
clinical test to identify individuals more likely to develop cisplatin-
induced deafness with a positive predictive value of 92.9% and a
negative predictive value of 48.6%.42 Whether treatment can be
adapted for an individual patient following on from these results will
depend on the potential alternative treatments available and balance
of risks for each child and each tumor type. Similarly, genes involved in
cisplatin-DNA adduct repair (ERCC1, ERCC2) can increase the risk of
cisplatin-associated toxicity but may also carry a tumor cell survival
advantage. This is because there are molecular factors that not only
play a role in platinum’s mode of action but also interfere with the
ability of the drug to induce apoptosis (Table 1).19,47,49,50,54 Target
tissues within the cochlea may show a variable genetic susceptibility to
platinum, and genetic variation in the detoxification of platinum
within the cochlea may contribute to the severity of ototoxicity.47

Investigators have also been interested in genetic variation in the
glutathione S-transferase genes with somewhat conflicting results in
adults: one group identifies an association with GSTM3,47 and another
group identifies an association with GSTP1.55 Replication of
genotype-phenotype findings is needed in both candidate gene and
genome-wide approaches to evaluate validity and applicability in the
clinic.56,57 All of the studies done to date are limited by the fact that
they are retrospective in nature; thus, prospective evaluation of these
genetic variations through future studies is urgently needed.
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Fig 2. Kaplan-Meier graph of cisplatin ototoxicity and number of thiopurine
S-methyltransferase (TMPT) and catechol-O-methyltransferase (COMT) risk al-
leles. An increasing number of TPMT rs12201199 and COMT rs9332377 risk
alleles is associated with earlier onset of cisplatin-induced hearing loss (P � .001)
and with more severe cisplatin-induced hearing loss (P � .001; adapted by
permission from Macmillan Publishers: Nature Genetic, 200942).

Table 1. Results of Published Studies in Cisplatin Pharmacogenomics
Using Candidate Gene Approach

Gene/Protein Summary of Results

Megalin Selected for candidate gene approach because it is highly
expressed in renal proximal tubular cells and marginal
cells of the inner ear. Also associated with the uptake
of ototoxic aminoglycosides.46

GSTs Animal studies suggest GSTs are found in the cochlea
and have a role in protection from ototoxicity. The
GSTM1, GSTT1, and GSTP1 genes are polymorphic in
humans, and nonfunctional variants are commonly
found in whites.47

TPMT, COMT Two cohorts (identified through the Canadian
Pharmacogenomics Network for Drug Safety) were
evaluated for cisplatin toxicity.42 They used a gene
chip composed of variants in 220 drug metabolism
genes and found that genetic variants of TPMT (odds
ratio, 17) and COMT (odds ratio, 5.5) were significantly
associated with cisplatin-induced hearing loss. The
combination of TPMT and COMT genotypes could be
used as a clinical test to identify those who will have
cisplatin-induced deafness with a positive predictive
value of 92.9% and a negative predictive value of
48.6%.42 Mechanisms of toxicity include increased
efficiency of cisplatin cross-linking, as well as a
possible role of the methionine pathway through a
common substrate, S-adenosylmethionine.42

ERCC1, ERCC2 ERCC1 encodes an excision repair enzyme involved in
platinum DNA adduct repair.48 Two common single
nucleotide polymorphisms in ERCC1 are correlated
with an increased risk of both toxicity and survival in
adults with non–small-cell lung tumors.49,50

Mitochondrial
gene
mutations

No studies have been performed that have evaluated for
associations between mitochondrial gene mutations
and cisplatin-induced hearing loss. Aminoglycoside-induced
deafness is thought to be associated with mutations in the
mitochondrial 12S ribosomal RNA gene.51-53

Abbreviations: COMT, catechol-O-methyltransferase; ERCC1, excision repair cross-
complementation group 1; ERCC2, excision repair cross-complementation group 2;
GST, glutathione-S-transferase; TPMT, thiopurine S-methyltransferase.
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The challenges to these studies are that false-positive findings
may occur that are not reproducible because of small sample size,
inadequate phenotyping, poor case-control definition and/or use of
patients from different ancestries. Moreover, monogenic approaches
may underestimate susceptibility to platinum ototoxicity because it is
likely that multiple genetic pathways are involved in the metabolism,
transport, and detoxification of platinum. Future research will require
a polygenic approach and novel methodologies.58 Cost reduction and
new techniques in whole-genome sequencing should permit large-
scale projects if adequate sample sizes of well-characterized pheno-
types become available. Inclusion of genetic studies in pediatric
treatment studies with standardized audiologic assessment is essential
so that the phenotyping will be adequate to identify ototoxicity sus-
ceptibility alleles.

OTOTOXICITY GRADING

Platinum ototoxicity is sensorineural and typically bilateral, initially
impairing hearing in the high frequencies and progressing to lower
frequencies with increasing cumulative dose.6,7 The risk is greatest in
young children, and there are significant long-term implications, par-
ticularly if the children are prelingual or in the early stages of language
development2 or have other functional impairments such as visual
deficits or cognitive dysfunction. Since high-frequency speech sounds
are critical to speech intelligibility, even mild hearing loss in the high
frequencies may affect academic and social-emotional development
in young children.59-63 Acquired hearing loss can be addressed with
hearing assistive technology, speech-language therapy, and/or the use
of communication strategies. It is essential to appreciate that although
these interventions may reduce the negative consequences of the hear-
ing loss, they do not restore normal hearing. If we are to succeed in
conducting prospective pediatric clinical trials to reduce platinum
ototoxicity and compare patients, disease groups, candidate genes,
and otoprotective agents, it is critically important to adopt an interna-
tional standard for grading and comparing ototoxicity at the end
of therapy.64

Impact of Ototoxicity in Children

Compared with adults and adolescents, young children require
greater audibility for speech recognition and comprehension. Young
children do not have the language base or neurologic maturity to fill in
the gaps when acoustic access is compromised.65 Hearing loss de-
creases the audibility of speech and also reduces the clarity of
speech.61,62 Platinum ototoxicity initially affects high-frequency hear-
ing. When low-frequency hearing is preserved, children continue to
hear vowel sounds, intonation, nasality, and consonants that have
primary energy in the lower frequencies. High-frequency hearing loss
causes difficulty in distinguishing high-frequency consonants (s, sh, f,
t, z, th, h, k, p) that are critical for speech intelligibility, and it signifi-
cantly impairs recognition of speech in the presence of background
noise.66-68 For children developing language and vocabulary who are
learning spoken language through listening, high-frequency hearing
loss is communicatively and educationally significant.65 Gurney et al63

studied educational achievement and quality of life in 137 neuroblas-
toma survivors. Children with hearing loss were reported as having
twice the rate of educational difficulties and need for support services
or special education.

High-frequency hearing loss in older children and adolescents
has an impact on ease of listening and may negatively affect educa-
tional achievement and social-emotional development.60 Learning in
a classroom environment is highly dependent on hearing and listen-
ing. Poor classroom acoustics (noise and reverberation) compound
the perceptual deficits caused by hearing loss.

Ototoxicity Grades and Classification

Numerous ototoxicity criteria or grading systems have been de-
veloped and used to classify hearing loss in children, but in the clinical
trial setting, uniformity is essential. There are currently two main types
of ototoxicity assessment criteria: (1) those that rely on change of
hearing from baseline, including WHO Common Toxicity Criteria,69

National Cancer Institute Common Toxicity Criteria for Adverse
Events (CTCAE),70 protocol criteria from Children’s Cancer Group
A9961 (CCG-A9961; phase III intergroup average-risk medulloblas-
toma protocol71), and the Children’s Hospital Boston (CHB) scale72),
and (2) those specifically written for children that measure absolute
hearing levels, including Brock et al7 and Chang and Chinosornva-
tana73 (hereafter Brock and Chang), and the new SIOP Boston scale
proposed in this article. The new scale detailed in Table 2, which all
participants agreed on, combines the best elements from all the assess-
ment criteria. This new scale will make it possible to compare clinical
trial outcomes world-wide.

Classification of ototoxicity in children should be objective, sen-
sitive, reliable, valid, functionally relevant, applicable to results ob-
tained at any age, and simple to understand and describe. The primary
intent of any scale will depend on whether its purpose is to guide
treatment decisions, identify ototoxicity at the soonest possible oppor-
tunity during treatment, or report the incidence and severity of ac-
quired hearing loss in children at the completion of treatment for
comparison of clinical trials. The SIOP scale is intended to be used for
patients at the end of treatment on a clinical trial (Table 2). It is
sensitive to high-frequency hearing losses that result in reduced audi-
bility of the average speech spectrum, and it uses the criteria that
correspond to functional outcomes, including the need for audiologic
interventions such as hearing aids and other assistive technologies.

Table 2. SIOP Boston Ototoxicity Scale

Grade Parameters

0 � 20 dB HL at all frequencies
1 � 20 dB HL (ie, 25 dB HL or greater) SNHL above 4,000 Hz (ie,

6 or 8 kHz)
2 � 20 dB HL SNHL at 4,000 Hz and above
3 � 20 dB HL SNHL at 2,000 Hz or 3,000 Hz and above
4 � 40 dB HL (ie, 45 dB HL or more) SNHL at 2,000 Hz and above

NOTE. Scale is based on sensorineural hearing thresholds in dB hearing level
(HL; bone conduction or air conduction with a normal tympanogram). Bone
conduction thresholds are used to determine the grade in the case of
abnormal tympanometry and/or suspected conductive or mixed hearing loss.
Even when the tympanogram is normal, bone conduction is strongly recom-
mended at the single frequency that is determining the ototoxicity grade to
fully confirm that the hearing loss at that frequency is sensorineural. Tempo-
rary, fluctuating conductive hearing loss due to middle ear dysfunction or
cerumen impaction is common in the pediatric population, and decreases in
hearing thresholds that include conductive hearing losses do not reflect
ototoxicity to the cochlea.

Abbreviations: SIOP, International Society of Pediatric Oncology; SNHL,
sensorineural hearing loss.
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The scale was based on a modification of the CHB functional scale,72

which classifies hearing loss as grade 1, 2, or 3 on the basis of change in
hearing threshold of 20 dB or more compared with baseline measures.
The CHB scale was validated by using the Brock scale which, in a multi-
variate analysis, showed that cisplatin dose was a significant predictor of
hearing loss. The CHB scale was favored for its simplicity and objectivity,
but two main modifications were recommended. The first was to use
absolute hearing levels similar to those of Brock and Chang. The second
was to add a grade 4 that was equivalent to Brock and Chang grade 3.

The reason for opting for absolute hearing levels is that, although
baseline evaluation is the gold standard for ototoxicity monitoring
and obtaining a baseline is recommended for all children who are
treated with cisplatin, it has been recognized for many years that a
complete and reliable baseline evaluation is not always possible in
young children with cancer. Children are often quite sick, they may be
fearful in the clinical setting, and attention or cooperation may be
limited. When grading is based on change from baseline, audiograms
from children without a baseline are not gradable. Furthermore, ab-
solute hearing threshold levels after cessation of treatment, rather than
change from baseline, determine whether an individual child has
sufficient acoustic access to all of the speech sounds for everyday
listening situations, including distance hearing and the ability to un-
derstand speech in a noisy environment.

Grade 4 was added, equivalent to Brock and Chang grade 3, to
distinguish children who acquire moderate or greater ototoxic hearing
loss from those with milder impairment, since there are important
functional and clinical differences as the degree of hearing loss in-
creases. A minor modification was to expand grade 3 to include
hearing loss greater than 20 dB at 2,000 or 3,000 Hz, since audibility at
both 2,000 and 3,000 Hz is critical for speech intelligibility, and loss at
either of these frequencies is commonly used as the indication for
hearing aids in children.

The SIOP Boston ototoxicity scale is being validated on existing
data that include international multicenter audiologic results in very
young children treated with cisplatin. Results will be directly com-
pared with existing scales (CTCAE versions 3 and 4; Brock and Chang)
to determine whether the SIOP scale better correlates with functional
outcomes and offers improved simplicity and inter-rater reliability.
Results will be submitted for future publication and the SIOP scale will
be recommended if the study outcomes are positive.

OTOPROTECTION

Several promising otoprotective agents are in preclinical and clinical
development. The challenge is how to select the best products for
further investigation, how to evaluate their efficacy and safety, and
how to introduce them into clinical practice.

Preclinical Studies

Activated platinum agents react preferentially with antioxi-
dant molecules, particularly glutathione and metallothioneins.74

In cancer cells with high levels of glutathione, platinum can be
effectively bound by the glutathione, inhibiting DNA binding and
reducing the chemotherapeutic efficacy in these tumors.75 Cisplatin-
induced ototoxicity is reduced in animal models by a variety of
antioxidants, including N-acetyl-cysteine (NAC),13,14,76-78 alpha-
tocopherol,79,80 lipoic acid,81-83 sodium thiosulfate (STS),14,17,84-87

salicylate,88 ebselen,82,89
D-methionine,90 and amifostine.86,91

Preclinical studies have demonstrated that choice of species, dos-
ing protocol, route of administration, and optimal timing relative to
platinum therapy are critical issues.13,14,72,87,92-94 Intravenous or intra-
arterial administration of NAC is required to achieve the high concen-
tration necessary for otoprotection, since oral administration does not
provide effective concentrations.13,14,78,87 Strategies for localized de-
livery of protective molecules include transtympanic or round window
delivery,77,92,95 although this method has had variable success in animal
models to date, depending on the agent.96,97 [SCAP]d-methionine has
shown complete otoprotection with round window application or oral
administration in animal studies.96,98,99 As is the case with any chemo-
protectant, systemic administration of otoprotectants must address
whether the protective agent interferes with the tumoricidal effect of
platinum. Delayed administration of a protective agent such as STS or
NAC may provide hearing protection4,5,13,14 without compromising
anticancer therapy87,100,101 (Fig 3).

Clinical Studies

Antioxidants that have been tested as otoprotectants in clinical
trials in humans receiving platinum-based chemotherapy are
amifostine69-71,102 and STS.4,5 To the best of our knowledge, the only
otoprotection study completed in the cooperative oncology group
setting to date is CCG-P9645, a randomized controlled trial of amifos-
tine for prevention of cisplatin-induced hearing loss in children with
newly diagnosed hepatoblastoma, conducted by the Children’s On-
cology Group (COG) from 1999 to 2006.102 Amifostine did not pro-
vide otoprotection when the suggested dose and schedule were used,
and it was accompanied by hypocalcemia. However, a more dose-
intensive schedule of amifostine tested in a comparative cohort
study71 was reported to reduce ototoxicity in children treated with
cisplatin for medulloblastoma. Both the COG, which fully accrued as
of March 2012, and the International Pediatric Oncology Epithelial
Liver Tumor Strategy Group (SIOPEL) are currently conducting ran-
domized controlled trials of STS to prevent cisplatin-induced hearing
loss. Further information can be found at the National Cancer Insti-
tute Physician Data Query (NCI-PDQ) Clinical Trials Web site.103

Both of these phase III STS studies are based on phase II studies of
carboplatin followed by delayed STS (Fig 3D).4 In addition, these
studies have also incorporated DNA collection from patients, which
allows pharmacogenomic studies to be performed.

Emerging Agents

Several properties or characteristics constitute the ideal pedi-
atric otoprotectant: it must be effective (reliable otoprotection), be
safe (no tumor protection), have minimal adverse effects, use
simple administration techniques, be suitable for use with various
platinum compounds and schedules of administration, and be of
sufficient interest to the pharmaceutical industry for investment in
research and development.

Currently no pharmacologic agents have US Food and Drug
Administration (FDA) approval to prevent or reverse platinum-
induced hearing loss, although STS has orphan-drug designation
as an otoprotectant. The development of amifostine, STS, NAC,
D-methionine, and ebselen are summarized in Table 3. NAC is well
established as being safe in humans, shows good promise as an
otoprotectant, has the added benefit of providing nephroprotec-
tion from cisplatin,11,12 and when combined with STS, it may
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protect the bone marrow from carboplatin toxicity.101 We recom-
mend completing or initiating pediatric clinical trials with STS,
NAC, D-methionine, and possibly ebselen, depending on further
findings as these drugs are developed.

Another approach to otoprotection is that of anatomic or compart-
mental therapy, that is, delivery of D-methionine to the round window
before systemic treatment with platinum-based chemotherapy.96

CONSIDERATIONS IN CLINICAL STUDY DESIGN
FOR OTOPROTECTION

Potential characteristics of clinical trials of otoprotectants will vary
according to their phase of drug development. After phase I studies to

assess pharmacokinetics, pharmacodynamics, and dose-limiting tox-
icity, each otoprotectant must be tested in patients receiving ototoxic
chemotherapy. Phase II studies will estimate dose-timing response
curves and efficacy range with hearing threshold change or proportional
incidence of hearing loss as the outcome measure. Randomized phase III
study designs will be necessary to confirm protection against ototoxicity
(n � 100 to 250 patients). Exact sample sizes will depend on the charac-
teristicsofthestudyagentandthestatisticalparametersused(eg,effectsize
and desired significance level). Pharmacogenomic testing that leads to
only patients at high risk for ototoxicity being included in clinical trials
may enable smaller sample sizes to be used for these protectant trials.

Pursuing the two major goals of efficacy (reducing ototoxic-
ity) and safety (not compromising chemotherapeutic antitumor
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Fig 3. Chemoprotection studies. (A) Effect of sodium thiosulfate (STS) and cisplatin on subcutaneous human neuroblastoma xenograft growth. Nude mice were
inoculated subcutaneously with 3.2 � 107 SMS-SAN neuroblastoma cells and were treated with no treatment (blue circles; n � 5), cisplatin 4 mg/kg intraperitoneally
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per week (data adapted100). (B) Time to tumor progression (tumor volume of � 600 �L or last measurement taken) was determined. The probability of progression-free
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activity) within the same clinical trial presents serious challenges in
statistical design. The sample size required for proving superiority
in otoprotection is usually substantially smaller than that required
for demonstrating noninferiority in tumor control.109 Study designers
must choose which end point should control power calculations.
Given the justifiable concern for ensuring patient safety (ie, lack of
tumor protection), there may be a temptation to insist on completion
of classical noninferiority trials involving sample sizes of several hun-
dred patients. However, a classical noninferiority trial of this type is
not feasible in pediatric oncology, because accrual of adequate num-
bers of children with cisplatin-sensitive cancers would take many years
and would lock up limited clinical trials resources in the interim.109 A
trial in adults to justify the pediatric indication may not provide a
definitive solution because hearing loss is not the dose-limiting cispla-
tin toxicity in adults that it is in children,110 and common adult tumors
treated with cisplatin are insufficiently chemotherapy-sensitive to
serve as a marker for tumor protection.

A more novel approach than the traditional noninferiority study
is critically needed to optimize safety in a practical way that permits
effective otoprotectants to be developed and made commercially
available. Lacking such innovation, the field of otoprotection and the
children who stand to benefit from protective agents are condemned
to the status quo—life with significant hearing loss, the associated
educational and social costs, and the risk of reduced cancer control
with platinum reduction or omission. One approach for these unique
pediatric situations may be for regulatory agencies such as the FDA to
accept a combination of preclinical studies that are unequivocal on the
tumor protection question plus smaller clinical trials in children that
are compelling for hearing protection and at least reassuring against
tumor protection. Development of such a strategy will require a part-
nership of committed individuals in academic medicine, the pharma-
ceutical industry, and FDA.

Strategies for improving the safety and efficiency of trial designs
include combining trials (eg, phase IIIA and IIIB could be designed in
one trial with an interim analysis of otoprotection and a final analysis
of antitumor efficacy). Safety can be enhanced by incorporating an
interim futility analysis on the otoprotection question, which limits
risk to future patients by identifying an ineffective agent before study
completion. Another strategy is to devise a method for monitoring
early tumor responses in an initial study cohort. Although this ap-
proach will likely lack statistical significance because of the small
number of patients, it may serve as an early warning system to detect
major, unanticipated treatment failures. Once one or more safe and
effective otoprotectants have been identified, future trials of a new
agent may need to incorporate an established agent, rather than ob-
servation, as the control arm.

Clinical trials of otoprotection may be conducted in the setting of
single institutions, multiple collaborating institutions (a consortium),
or larger cooperative oncology groups. In planning and designing
future studies, it is imperative that anticipated concerns of treating
pediatric oncologists about tumor protection be addressed as thor-
oughlyaspossible intheconceptproposalstagebyusingavailablepreclin-
ical and clinical data, and for experienced pediatric audiologists to be
involved in determining the study end points and methods.111 Central
review of the audiologic data are recommended to ensure that maximal
evaluable data will be available during the analytic phase of the study.

RECOMMENDATIONS

Mechanisms to foster translation from basic science to clinical practice
are needed, as is more research regarding mechanisms of platinum
ototoxicity, trafficking of platinum to cochlear sensory cells, and de-
velopment of clinically relevant animal models for studying ototoxic-
ity and otoprotectants. Collaboration between the pharmacogenomic

Table 3. Representative Emerging Otoprotectants for Use With Platinum-Based Chemotherapy

Agent Route Mechanism Comment

STS IV Thiol-reducing agent In rats, STS protects against ototoxicity14 without reducing antitumor efficacy.101

Currently in phase III trials. Possible approaches include delayed
administration, 14,87,100 two-compartment models, 4,5,104 and cochlear
application.85,96

Amifostine IV Metabolized to WR-1065,
a thiol-reducing agent

Most trials show no otoprotection; dose intensity may be critical; routine use of
amifostine to prevent platinum-associated neurotoxicity or ototoxicity is not
currently supported by the American Society of Clinical Oncology 2008 Clinical
Practice Guideline.105

NAC IV Thiol-reducing agent High dose (1,000 mg/kg) IV or intra-arterial NAC protects against cisplatin
ototoxicity in the rat when given either 30 minutes prior to or 4 hours after
chemotherapy and also blocks kidney toxicity and weight loss.14,78 Delayed IV
NAC does not block chemotherapy antitumor efficacy.101

D-methionine PO, IV, or delivery to
the round window

Glutathione modulator,
free-radical scavenger

Animal studies have confirmed D-methionine protection from carboplatin- and
cisplatin-induced ototoxicity.99 Effective delivered PO,99 systemically, or to the
round window.96 Animal studies have not shown significant antitumor
interference.106 One small-scale clinical trial showed complete
otoprotection.107 Larger-scale clinical trials will be needed.

Ebselen PO Glutathione peroxidase
promoter

In animal studies, ebselen, a selenium-containing compound, has reduced
cisplatin-induced outer hair cell loss with and without allopurinol co-
administration89 and does not appear to comprise cisplatin’s antitumor
efficacy.108 To date, ebselen has not been tested in clinical trials, but trials are
in the planning stages.

Ringer’s solution or
dexamethasone

Intratympanic injection Agent dependent (anti-
inflammatory)

Compartmental therapy via tympanostomy tubes.92,95

Abbreviations: IV, intravenous; NAC, N-acetylcysteine; PO, orally; STS, sodium thiosulfate.
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community and basic scientists to investigate potential new pathways
and biologic understanding could result in novel strategies.

New technologies and cost reduction now make relevant pharma-
cogenomic research possible. Identification of genotypes that are at high
risk for ototoxicity and novel clinical trial design could increase the power
of clinical studies and decrease the sample size needed to demonstrate
effect. Cooperative groups that focus on hearing loss should collect DNA
samples for research. Audiologic results are a key end point in the study of
otoprotective agents, and they provide the phenotypes for pharmacog-
enomic ototoxicity research. It is critical that high-quality, reliable audio-
logic data be obtained. International standardization and wide use of the
SIOP Boston ototoxicity scale (Table 2) will allow for comparison be-
tween studies and replication of results.

It is feasible to conduct otoprotection trials in the pediatric
cooperative oncology group setting as with STS, but cooperative
groups need to include otoprotection as a high scientific priority.
Additional innovative study designs that measure otoprotection
need to be generated to modify standard tumor-related phase III
trials, possibly through a task force that involves key scientific
disciplines and stakeholders, including pediatric oncologists, audi-
ologists, basic and translational researchers, biostatisticians, clini-
cal pharmacologists, pharmaceutical companies, and patient
advocates (particularly parents and childhood cancer survivors).
This testing paradigm could be readily applied to new otopro-
tectants as they become available.
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